
Python for Machine Learning
Tassadaq Hussain

Professor Namal University
Director Centre for AI and Big Data

Collaborations:
Barcelona Supercomputing Center Barcelona, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Agenda
● Data
● Coding Languages
● Conventional Programming
● Python Language
● Python for Machine Learning
● Python for Image Processing

Information Future Trend

Technology Research Gartner Inc. states that information data volume doubles after every 18 months.

Processing Tech
Data Type:

● A data type represents the type or kind of data that a variable or object can hold in a
programming language.

● It defines what operations can be performed on the data, how much memory it occupies, and
how the data is stored.

● Examples of common data types include integers, floating-point numbers, strings, and
booleans.

 Data Set:
● A data set is a collection of data points or records that are related in some way.
● It often represents a sample or a population of data used for analysis, research, or study.
● Data sets can be organized in various structures like tables, spreadsheets, databases, or even

files.

 Data Structure:
● A data structure is a way of organizing and storing data in a computer's memory or storage

devices.
● It defines how data elements are arranged, accessed, and manipulated.
● Data structures can be simple, like arrays and linked lists, or complex, like trees and graphs.

Computational Capability

It is estimated that sometime between the years 2025
and 2050, a personal computers will exceed the
calculation power of a human brain.

Hype cycle for emerging high technologies to
reach maturity and industrial productivity

within the next decade.

Intellectual Capability

Information ComputingAlgorithm
Programming

Agenda
● Importance
● Coding Languages
● Conventional Programming
● Python Language
● Python for Machine Learning
● Python for Image Processing

Data Processing

Coding Languages
– Programming Languages
– Scripting Languages

Agenda
● Importance
● Coding Languages
● Conventional Programming
● Python Language
● Python for Machine Learning
● Python for Image Processing

Signal Processing Applications
● Sound applications

– Compression, enhancement, special effects, synthesis, recognition,
echo cancellation,…

– Cell Phones, MP3 Players, Movies, Dictation, Text-to-speech,…
● Communication

– Modulation, coding, detection, equalization, echo cancellation,…
– Cell Phones, dial-up modem, DSL modem, Satellite Receiver,…

● Automotive
– ABS, GPS, Active Noise Cancellation, Cruise Control, Parking,…

● Medical
– Magnetic Resonance, Tomography, Electrocardiogram,…

● Military
– Radar, Sonar, Space photographs, remote sensing,…

● Image and Video Applications
– DVD, JPEG, Movie special effects, video conferencing,…

● Mechanical
– Motor control, process control, oil and mineral prospecting,…

http://www.eas.asu.edu/~dsp/grad/anand/java/Audio/Audio.html

Signal Processing
 System

Signal Processing System

18

Signals

0,1,2,2.2,3,3,2.9,2,1,-.5,-2 - -------------------------

x[100]=0,1,2,2.2,3,3,2.9,2,1,-.5,-2]

Three-chip color Camera

(a) Bayer (b) Filter patterns used in single chip cameras.

Color Pixel = RedRed (8bit) + GreenGreen (8bit) + BlueBlue (8bit)

Gray scale intensityGray scale intensity = 0.299 R + 0.587 G + 0.114 B

Pixel >> Image >> Video

Image Resolution

 (a) 256 × 256; (b) 128 × 128; (c) 64 × 64, (d)32 × 32.

Pixel Depth

 Image 256x256 array pixels: (a) 32 bit (b) 16 (c) 8 (d) 4

Performance Measures

 3 Mega Pixel Image = 3145720 pixels
 A 32 bit Processor = 3.14 million operation / sec
 Pixels = 2048 x 1536 x 24 bits/pixel
 Local Memory = 9.4 Mega Byte for single Image
 Video Processing = 3.14 x 10 x 30 (fps)
 = 94.2 x 10

25

Levels of processing

Scalar Processing
➢ Perform single operation on a single signal value
Stream Processing
– All computations with one input sample are completed

before the next input sample arrives
Block processing
– Each input sample x(n) is stored in memory before any

processing occurs upon it. After L input samples have
arrived, the entire collection of samples is processed at
once.

Vector processing
– Systems with several input and/or output signals being

computed at once: can work with streams or blocks

Problem Program and Process

Problem Program and Process

Artificial
Intelligence

Agenda
● Importance
● Coding Languages
● Conventional Programming
● Python Language
● Python for Machine Learning
● Python for Image Processing

Scripting Languages
● Scripting languages focus flexibility, rapid development and

dynamic checking.
● Their type systems embrace very high level concepts such as

tables, patterns, lists and files.
● There a number of distinct groups that fall under the scripting

language family.
● Languages such as Perl and Python are known as ``glue’’

languages because they were designed to glue existing programs
together.

● There are other extensible types of scripting languages used in
the WWW also.

30

Python Language

Everything in Python is an object.
The objects can be either mutable or

immutable.
A mutable object can be changed after it is

created, and an immutable object can’t.

Strengths
● Easy to learn:
● Supports multiple programming paradigms
● Extensible
● Active open source community
● Large and Active Community Support
● Powerful Set of Packages
● Easy and Rapid Prototyping
● Easy to Collaborate

Python for Different Technologies

Setting Up a Python
Environment

● Set Up Anaconda Python Environment
● Installing Libraries

– pip install required_package
●

Python for HPC
● Python is known for its very expressive language, easy to read syntax, large

community, and impressive range of extension modules.
● Python has regularly come to be used as a program glue due to its ability to

interface so easily with external applications.
● With an increase in the availability of Python tools for HPC comes a decrease

in the performance barrier between Python and its complied foes.
● There are the more mature projects such as NumPy and SciPy, which offer

performance without compilation, as well as recent attempts to bring parallel
libraries and just-in-time compiling to Python.

● Numba is a python module that produces compiled code from python functions
that can lead to significant speed-ups. Numba is also able to compile code for
both Nvidia and AMD GPUs, which presents an exciting new HPC approach
consisting of rapid development times and fast execution on desktops.

35

Development Environments

1. PyDev with Eclipse
2. Komodo
3. Emacs
4. Vim
5. TextMate
6. Gedit
7. Idle
8. PIDA (Linux)(VIM Based)
9. NotePad++ (Windows)
10.BlueFish (Linux)
11. ipython

36

Python Keywords

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

System
Method

Algorithm
.
.

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

Sensor, stored, etc.

System

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

Sensor, stored, etc.

System

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

Sensor, stored, etc.

Local Database, Dataset

System

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

Sensor, stored, etc.

Local Database, Dataset

Conditions - Filtering

System

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

Sensor, stored, etc.

Local Database, Dataset

Conditions

RepetitionsLoop, Iterations

System

Python Scripting Language
● Data Input Output
● Data Types – Data Structures
● Conditional Statements
● Repetition Statements
● Functions and Libraries

System

Sensor, stored, etc.

Local Database, Dataset

Conditions

Repetitions

Operations

44

Python Environment

Libraries

Read data

Operations: Filtering, Processing, Classification, Control
etc.

Visualizing

Write, Operate etc

45

Modules and Functions

import math as mt

mt.functions…

import math
math.cos

from math import cos, pi
cos

from math import *

46

Example 1

Reading and Writing Data
● Understand the source and type of data

48

Reading Files

 f = open(“names.txt")
>>> f.readline()
Results

Uses libraries to deal with complex Uses libraries to deal with complex
databases and datastructures. databases and datastructures.

49

Data Types/Structure

Lists
Tuples
Set
Dictionary

50

List, Tuple, Set and Dictionary

 List: Use when user need an ordered sequence of homogenous collections, whose
values can be changed later in the program.

my_list = ['a','b','c','b', 'a']
 Tuple: User when you need an ordered sequence of heterogeneous collections whose

values need not be changed later in the program.
l = (1, 2, 3)
 Set: It is ideal for user when user don’t have to store duplicates and is not concerned

about the order or the items. User just want to know whether a particular value already
exists or not.

set([1, 2, 3, 4])
 Dictionary: It is ideal for use when user need to relate values with keys, in order to look

them up efficiently using a key.
d = {'first':'string value', 'second':[1,2]}
d.keys()

51

Condition

if continuation :
print value

if gpa > 2 :
 print gpa

52

Repetition

for x in range(1, 6, +1): # range(start, stop, step)
 print x

Agenda
● Importance
● Coding Languages
● Conventional Programming
● Python Language
● Python for Machine Learning
● Python for Image Processing

Numpy
● NumPy, short for Numerical Python, is the

foundational package for scientific computing
in Python.

● Numpy is the backbone of Machine Learning in
Python. It is one of the most important libraries
in Python for numerical computations. It adds
support to core Python for multi-dimensional
arrays (and matrices) and fast vectorized
operations on these arrays.

Numpy
● A fast and efficient multidimensional array object

ndarray
● Functions for performing element-wise computations with

arrays or mathematical operations between arrays
● Tools for reading and writing array-based data sets to

disk
● Linear algebra operations, Fourier transform, and

random number generation
● Tools for integrating connecting C, C++, and Fortran

code to Python

56

Module: Numpy

NumPy is the fundamental package for scientific computing with
Python.

It contains among other things:
● A powerful N-dimensional array object
● Sophisticated (broadcasting) functions
● Tools for integrating C/C++ and Fortran code
● Useful linear algebra, Fourier transform, and random number capabilities

Source: http://www.numpy.org/

57

NumPy Functions

58

Pandas

Pandas provides rich data structures and
functions designed to make working with
structured data fast, easy, and expressive.

59

Pandas

Pandas is an important Python library for data
manipulation, wrangling, and analysis.

Pandas allows you to work with both cross-
sectional data and time series based data. So
let’s get started exploring pandas!

All the data representation in pandas is done
using two primary data structures:

➢ Series
➢ Dataframes

60

Matplotlib

matplotlib is the most popular Python library
for producing plots and other 2D data
visualizations.

It is well-suited for creating plots suitable for
publication.

Provides a comfortable interactive
environment for plotting and exploring
data.

61

SciPy

SciPy is a collection of packages
addressing a number of different standard
problem domains in scientific computing.

62

Files

List of dictionaries
CSV files
Databases

63

Understand Dataset

data.dtype

np.size(data)

np.shape(data)

64

65

data2 = genfromtxt('./signals/ecg.csv',
delimiter=',')

np.shape(data2)

Signal = data2[:,1]

66

67

Accessing Array Element

68

Linear Algebra Using numpy

Machine Learning

Classification
Categorization
Prediction
Anomaly Detection
Regression
Recommendation Systems
Natural Language Processing (NLP)
Time Series Forecasting
Clustering and Segmentation
Reinforcement Learning
Image Generation

70

Image Processing Toolkit OpenCV

OpenCV (Open Source Computer Vision Library) is
released under a BSD license and hence it’s free for
both academic and commercial use. It has C++, C,
Python and Java interfaces and supports Windows,
Linux, Mac OS, iOS and Android. OpenCV was
designed for computational efficiency and with a
strong focus on real-time applications. Written in
optimized C/C++, the library can take advantage of
multi-core processing. Enabled with OpenCL, it can
take advantage of the hardware acceleration of the
underlying heterogeneous compute platform.

Source: https://opencv.org/

71

Read and Display

import cv2
import numpy as np
from matplotlib import pyplot as plt

#input handler
img = cv2.imread('./images/L1.jpg')
plt.imshow(img)
plt.show()

OpenCV

IntelIntel®® OPEN SOURCE COMPUTER VISION OPEN SOURCE COMPUTER VISION
LIBRARYLIBRARY

GoalsGoals

Develop a universal toolbox for
research and development in the
field of Computer Vision

OpenCV FunctionalityOpenCV Functionality
(more than 350 algorithms)(more than 350 algorithms)

 Basic structures and operations
 Image Analysis
 Structural Analysis
 Object Recognition
 Motion Analysis and Object Tracking
 3D Reconstruction

Basic Structures and OperationsBasic Structures and Operations
 Image and Video Data Structures
Mat image;

Image = imread (“path”);

 Multidimensional array operations
include operations on images, matrices and histograms.
equalizeHist(src, dst);

 Dynamic structures operations
concern all vector data storages.

 Drawing primitives
allows not only to draw primitives but to use the algorithms for pixel access

 Utility functions
 in particular, contain fast implementations of useful math functions.

Image Read/Write
 Import cv2 as cv

gray_img = cv2.imread('images/input.jpg', cv2.IMREAD_GRAYSCALE)

cv2.imshow('Grayscale', gray_img)

cv2.waitKey()

cv2.imwrite('images/output.jpg', gray_img)

gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

Image Analysis

 Thresholds
threshold(src_gray, dst, threshold_value, max_BINARY_value, threshold_type);

 Statistics
 Pyramids
 Morphology
 Erosion , dilation etc

 Distance transform
 Feature detection

StatisticsStatistics

 min, max, mean value, standard deviation over
the image

 Norms C, L1, L2
 Multidimensional histograms
 Spatial moments up to order 3 (central,

normalized, Hu)

PyramidsPyramids

An image pyramid is a collection of images - all
arising from a single original image - that are
successively downsampled until some desired
stopping point is reached.
PyrUp()
pyrdown()
Gaussian pyramid:
Laplacian pyramid:

Image PyramidsImage Pyramids

 Gaussian and Laplacian

Multidimensional HistogramsMultidimensional Histograms

 Histogram operations : calculation,
normalization, comparison, back project

 Histograms types:
 Dense histograms
 Signatures (balanced tree)

Morphological OperationsMorphological Operations

 Two basic morphology operations using
structuring element:
 erosion
 dilation

 More complex morphology operations:
 opening
 closing
 morphological gradient
 top hat
 black hat

Morphological Operations ExamplesMorphological Operations Examples
 Morphology - applying Min-Max. Filters and its combinations

Opening IoB= (IB)BDilatation IBErosion IBImage I

Closing I•B= (IB)B TopHat(I)= I - (IB) BlackHat(I)= (IB) - IGrad(I)= (IB)-(IB)

Distance TransformDistance Transform

The distance transform operator generally takes binary images as inputs. In this
operation, the gray level intensities of the points inside the foreground regions are
changed to distance their respective distances from the closest 0 value (boundary).
distanceTransform()
 Calculate the distance for all non-feature points to the closest feature point
 Two-pass algorithm, 3x3 and 5x5 masks, various metrics predefined

Flood FillingFlood Filling

 Simple
 Gradient
cv2.floodFill(img, mask, (0,0), 255);

Feature DetectionFeature Detection

 Fixed filters (Sobel operator, Laplacian);
 Optimal filter kernels with floating point

coefficients (first, second derivatives, Laplacian)
 Special feature detection (corners)
 Canny operator
 Hough transform (find lines and line segments)
 Gradient runs

Convolution Convolution
Convolution is a fundamental operation in image processing. It
basically applies a mathematical operator to each pixel, and change
its value in some way.
To apply this mathematical operator, convolution uses another matrix
called a kernel. The kernel is usually much smaller in size than the
input image. For each pixel in the image, we take the kernel and place
it on top so that the center of the kernel coincides with the pixel under
consideration.
We then multiply each value in the kernel matrix with the
corresponding values in the image, and then sum it up. This is the
new value that will be applied to this position in the output image.

import cv2

import numpy as np

img = cv2.imread('images/input.jpg')

rows, cols = img.shape[:2]

kernel_identity = np.array([[0,0,0], [0,1,0], [0,0,0]])

kernel_3x3 = np.ones((3,3), np.float32) / 9.0 # Divide by 9 to normalize the kernel

kernel_5x5 = np.ones((5,5), np.float32) / 25.0 # Divide by 25 to normalize the kernel

cv2.imshow('Original', img)

value -1 is to maintain source image depth

output = cv2.filter2D(img, -1, kernel_identity)

cv2.imshow('Identity filter', output)

output = cv2.filter2D(img, -1, kernel_3x3)

cv2.imshow('3x3 filter', output)

output = cv2.filter2D(img, -1, kernel_5x5)

cv2.imshow('5x5 filter', output)

cv2.waitKey(0)

import cv2

from matplotlib import pyplot as plt

import numpy as np

img = cv2.imread('images/input.jpg')

cv2.imshow('Original', img)

size = 15

generating the kernel

kernel_motion_blur = np.zeros((size, size))

kernel_motion_blur[int((size-1)/2), :] = np.ones(size)

kernel_motion_blur = kernel_motion_blur / size

applying the kernel to the input image

output = cv2.filter2D(img, -1, kernel_motion_blur)

cv2.imshow('Motion Blur', output)

cv2.waitKey(0)

Sharpening Images
generating the kernels

kernel_sharpen_1 = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])

kernel_sharpen_2 = np.array([[1,1,1], [1,-7,1], [1,1,1]])

kernel_sharpen_3 = np.array([[-1,-1,-1,-1,-1], [-1,2,2,2,-1], [-1,2,8,2,-1], [-1,2,2,2,-1], [-1,-1,-1,-1,-1]]) / 8.0

The process of edge detection involves detecting sharp edges in
the image, and producing a binary image as the output.
Typically, we draw white lines on a black background to
indicate those edges.

We can think of edge detection as a high pass filtering
operation. A high pass filter allows high-frequency content to
pass through and blocks the low-frequency content. As we
discussed earlier, edges are high-frequency content. In edge
detection, we want to retain these edges and discard
everything else. Hence, we should build a kernel that is the
equivalent of a high pass filter.

Canny Edge DetectorCanny Edge Detector

import cv2
import numpy as np
img = cv2.imread('images/input_shapes.png',
cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape # It is used depth of
cv2.CV_64F.
sobel_horizontal = cv2.Sobel(img, cv2.CV_64F, 1, 0,
ksize=5)
Kernel size can be: 1,3,5 or 7.
sobel_vertical = cv2.Sobel(img, cv2.CV_64F, 0, 1,
ksize=5)
cv2.imshow('Original', img)
cv2.imshow('Sobel horizontal', sobel_horizontal)
cv2.imshow('Sobel vertical', sobel_vertical)
cv2.waitKey(0)

Hough TransformHough Transform
Detects lines in a binary image

•Probabilistic Probabilistic
Hough TransformHough Transform•Standard Hough Standard Hough

TransformTransform

Hough TransformHough Transform
Detects lines in a binary image

Hough Transform is a popular technique to detect any Hough Transform is a popular technique to detect any
shape, if you can represent that shape in mathematical shape, if you can represent that shape in mathematical

form. It can detect the shape even if it is broken or form. It can detect the shape even if it is broken or
distorted a little bit. We will see how it works for a line.distorted a little bit. We will see how it works for a line.

Contour RetrievingContour Retrieving

 The contour representation:
 Chain code (Freeman code)
 Polygonal representation

Initial Point
Chain code for the curve:
34445670007654443

Contour representation

Contours ExamplesContours Examples

Source Picture
(300x600 = 180000 pts total)

Retrieved Contours
(<1800 pts total)

After Approximation
(<180 pts total)

And it is rather fast: ~70 FPS for 640x480 on complex scenes

99

Machine Learning

Example

Processor / System Dhrystone MIPS / MIPS

Nios II 190 MIPS at 165 MHz

ARM Cortex A7 2,850 MIPS at 1.5 GHz

ARM Cortex-A9 (Dual core) 7,500 MIPS at 1.5 GHz

Raspberry Pi 2Raspberry Pi 2 1186 MIPS per core at 1.0 GHz1186 MIPS per core at 1.0 GHz

Nvidia Tegra 3 (Quad core Cortex-A9) 13,800 MIPS at 1.5 GHz

Intel Core 2 Extreme QX6700 (Quad core) 49,161 MIPS at 2.66 GHz

Intel Core i7 920 (Quad core) 82,300 MIPS at 2.93 GHz

Conventional Approach Write an Application

ML Approach Write an Application

Types of Machine Learning Systems

• Whether or not they are trained with human
supervision (supervised, unsupervised,
semisupervised, and Reinforcement Learning)

• Whether or not they can learn incrementally on the
fly (online versus batch learning)

• Whether they work by simply comparing new data
points to known data points, or instead by
detecting patterns in the training data and building
a predictive model, much like scientists do
(instance-based versus model-based learning)

Analyzing images of products on a production line to automatically classify them: This is image classification, typically performed using convolutional
neural net‐works (CNNs; see Chapter 14).

Detecting tumors in brain scans: This is semantic segmentation, where each pixel in the image is classified (as we want to determine the exact location and
shape of tumors), typically using CNNs as well.

Automatically classifying news articles:

This is natural language processing (NLP), and more specifically text classification, which can be tackled using recurrent neural networks (RNNs), CNNs, or
Transformers

Automatically flagging offensive comments on discussion forums: This is also text classification, using the same NLP tools.

Summarizing long documents automatically: This is a branch of NLP called text summarization, again using the same tools.

Creating a chatbot or a personal assistant: This involves many NLP components, including natural language understanding (NLU) and question-answering
modules.

Forecasting your company’s revenue next year, based on many performance metrics This is a regression task (i.e., predicting values) that may be tackled
using any regression model, such as a Linear Regression or Polynomial Regression model (see Chapter 4), a regression SVM (see Chapter 5), a regression
Random Forest (see Chapter 7), or an artificial neural network (see Chapter 10). If you want to take into account sequences of past performance metrics,
you may want to use RNNs, CNNs, or Transformers (see Chapters 15 and 16).

Making your app react to voice commands:

This is speech recognition, which requires processing audio samples: since they are long and complex sequences, they are typically processed using RNNs,
CNNs, or Transformers (see Chapters 15 and 16).

Detecting credit card fraud: This is anomaly detection (see Chapter 9).

Segmenting clients based on their purchases so that you can design a different marketing: strategy for each segment This is clustering (see Chapter 9).

Representing a complex, high-dimensional dataset in a clear and insightful diagram: This is data visualization, often involving dimensionality reduction
techniques

Recommending a product that a client may be interested in, based on past purchases: This is a recommender system. One approach is to feed past
purchases (and other information about the client) to an artificial neural network.

Building an intelligent bot for a game: This is often tackled using Reinforcement Learning (RL; see Chapter 18), which is a branch of Machine Learning that
trains agents (such as bots) to pick the actions that will maximize their rewards over time (e.g., a bot may get a reward every time the player loses some life
points), within a given environment (such as the game). The famous AlphaGo program that beat the world champion at the game of Go was built using RL.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	DSP is Everywhere
	Slide 16
	Slide 17
	Non-real time signal processing
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Structural levels of processing
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

